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1 Chapter 6

Section 2. Problem 26
n people distributed along a road L. Let X; denote the position of the ith
person. Our goal is to compute the following probability:

P{X(i) > X(i—l) + D,i € {2,3, - ,n}}
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Now let yr, = (L —z — (n — k)D), Vk € {1,...,n — 1}, note that dy, = —dxy,
so we can flip the bounds of integration:
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Oh my god I want to die why was that integral so long.
(*For legal reasons the above statement was not serious)
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Now suppose D > ﬁ Note that each person creates an open ball along

the line of radius % or diameter D. We would like it so that none of these balls

intersect. However given that D > (n—fl) If we were to place our people along
the line, they would create a total length of at least D(n — 1) on the line, which
means that they necessarily must intersect given that D(n — 1) > L. Thus
P{X(l) > X(i—l) + D,i e {2,3, . ,n}} =0.

Thus:

(n_l)D> , ifD<

P{X(i)>X(i1)+D,i6{2,3,...,n}}:{(1_ L (n i
0,

otherwise
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Xy =X ==X

are the ordered values of n independent uniform (0, 1) random variables. Prove
that forall 1 <k <n+1,

P{X(k) — X(k—l) > t} = (1 - t)n

where Xo =0, X(ppy) =1, and 0 <t < 1. fx,) x0)..... X0y = 2 [y f(z) = n!
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2 Chapter 7

Section 1. Problem 24

1. Let S1,S5,...,5, be the indicator functions for whether or not each pill
of the n small pills remains and B; = 1,...,m be the indicator functions
for whether or not each of the small pills created from the ith big pill
taken remains. It is clear to see that X the number of remaining small
pills remaining can be written as:

X = znjsi + iBj
i=1 j=1

Thus:

n m

EX] =S BS]+ S BB =n- P =1} + Y P(B))

i=1 j=1 =1
The last equality follows from the symmetry of our variables S,,.

1
PS =1 =07

The small pill must be taken at a time after all m big pills. And it is equally
likely to be picked before or after any of the m big pills, so (m+1) options.

1
m—i+1
The 7 small pill created by the big pill must be at a time after the remaining

m — i big pills, given that it is equally likely to be picked before or after
any of these big pills, (m — i) + 1 options.

P{B; =1} =

m
n 1 n n

1
E[X] = = - = H,,
[X] m+1+zm—j+1 m—|—1+j;j m—i—lJr

2. Let Y be the day on which the last large pill is chosen, note that:

Y = # of days with large pills + # of days with small pills
=m+(m+n—X)=2m+n—-X

Thus:

E[Y] = E2m+n — X] =2m+n — (”+Hm>

m+1



