
Binary Sequence Problem

Frank Liu

August 29, 2023

Problem.
Design and justify an algorithm that takes two natural numbers n and k and
outputs Mk(n), the number of possible binary strings of length n where the 1’s
must be no closer than k apart.

Dynamic Programming Approach
First we’ll consider a DP , an array with the following recurrence

DP [i] =

{
i if, i ≤ k

DP [i− 1] +DP [i− k − 1] otherwise

Algorithm 1 Returns Mk(n) given n, k ∈ N
Require: n, k ∈ N
validStrings(n, k) :
if n ≤ k then
return n;

end if
DP ← int[n]

for i← 1 to k do
DP [i] = i+ 1

end for

for i← k + 1 to n do
DP [i] = [i− 1] +D[i− k − 1]

end for

return DP [n]

1



Correctness

Claim: DP [i] = Mk(i),∀i ∈ N.

Proof. Suppose k ∈ N
Base Cases:
When 0 < i ≤ k, DP [i] = i+ 1 =

(
i
1

)
+ 1 = Mk(i)

Note that this is because there is at most a single 1, so we consider the number
possible permutations with a single 1,

(
i
1

)
, as well as the all 0 string.

Induction Hypothesis:
Suppose that ∀n < i, DP [n] = Mk(n), i > k

Induction Step:
Let us consider the two cases when we have a string of length i:

1. The last number is 1, this tells us that the next k last numbers must 0.
Thus the number of possible binary strings that end with 1 is the same as
Mk(i− k − 1)

2. The last number is 0, this tells us that the first i − 1 elements can be
any binary string of length i − 1 that satisfies the spacing conditions or
Mk(i− 1).

Thus Mk(i) = Mk(i− 1) +Mk(i− k − 1), since these two possibilities have no
overlap and their union is all possible binary strings. Thus by our hypothesis:

DP [i] = DP [i− 1] +DP [i− k − 1] = Mk(i− 1) +Mk(i− k − 1) = Mk(i)

Thus we conclude that DP [n] = Mk(n),∀n ∈ N V

The correctness of our algorithm follows.

Runtime Analysis

1. The if statement runs in O(1) time

2. Allocating space for an array of size n takes O(1) time

3. The first for loop runs k times with each iteration taking O(1) time

4. The second for loop runs n− (k+1) times with each iteration taking O(1)
time. Note that the for loops run only if n > k, thus the runtime of our
algorithm T (n) given an input of n and k is:

T (n, k) = O(1) +O(1) +O(k) +O(n− (k + 1)) = O(n)

2



Analytic Solution From part 1 we saw that Mk(n) follows the following re-
currence:

Mk(n) =

{
n if, n ≤ k

Mk(n− 1) +Mk(n− k − 1) otherwise

Calculating Mk(n) when k ≥ n takes constant time so let k < n. Let us consider
the following matrix representation of the recurrence:

Mn+1 =



Mk(n+ 1)

Mk(n)

Mk(n− 1)

...

Mk(n+ 2− k)


=


1 0 . . . 0 1

0

Ik−1
...
0


︸ ︷︷ ︸

k×k Matrix



Mk(n)

Mk(n− 1)

Mk(n− 2)

...

Mk(n+ 1− k)


= BkMn

Thus we can see that Mn = Bn−k
k Mk. Where:

Mk =



k + 1

k

k − 1

...

2


Using the naive definition of Matrix multiplication of k×k matrices takes O(k3).
We know that we can reduce exponentiation problems to run in O(log2(n)M),
where M is the runtime at each multiplication. Thus our total runtime is:

T (n, k) = O(log2(n)k
3)

Which is much more efficient than our first algorithm when n is large.
(When k3 < 2n

n ).

3


